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Comment on “Cylindrical phase of block copolymers: Stability of circular configuration to
elliptical distortions and thin film morphologies”
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Pereira[Phys. Rev. 563, 061809(2001)] has recently predicted that the hexagonal symmetry of the cylin-
drical phase irAB diblock copolymer melts is highly unstable. This is in stark disagreement with experiment,
and can be attributed to the fact that the connectivity ofAtendB blocks is not enforced in his implemen-
tation of the strong-segregation theory. Here, the stability of the hexagonal symmetry is supported by alterna-
tive calculations based on a more advanced strong-segregation theory that enforces the connectivity as well as
the more rigorous self-consistent field theory.
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Pereira 1] has recently examined the cylindrical phase ofblocks as well as minimizes the free energy with respect to
a diblock copolymer melt using strong-segregation theorthe interfacial shape, but it is relatively complicated to apply.
(SST [2], and found that a hexagonal unit cell is unstableless accurate but simpler to implement is an approach intro-
with respect to a deformation. In fact, he predicts that thejuced by Olmsted and Milngd.1], where the connectivity is
unit cell deforms to aspect ratios of upAc=1.4(see Fig. 1  enforced by subdividing the unit cell into infinitesimal
[3]. This result is highly unexpected and contradicts ourwedges. To confirm our expectations, we implement this lat-
present understanding that the entropic stretching energy faer algorithm.

vors domains of uniform thicknegg,5]. If we accept this The Olmsted-Milner approach still requires us to specify
prediction, we should also expect other structures, such am interfacial shape. In the interest of providing the most
the spherical phase, to be affected in a similar way. honest test of Ref.1], we select the same identical interfa-

To our knowledge, such a deformation has never beegial shape. That is we choose an elliptical interface that de-
suggested by experiment despite numerous transmissigorms affinely along with the Wigner-Seitz unit cell such that
electron microscopy studies. In shear-oriented samplegey both maintain the same aspect rafio(see the diagram
where the microtomed slice is known to be perpendicular tan Fig. 1). Wedges are then constructed emerging from the
the cylindrical axig6], any distortion=20% from hexago-
nal symmetry should be readily observed. Small-angle scat-
tering studies provide even further compelling evidence.
Powder patterns from unoriented samples of the cylinder
phase display a sequence of peaks at the relative positions
1:y/3:4/4:\7: ..., characteristic of hexagonal symmetry
[7]. Here, any distortior= 10% would produce an obvious
splitting of the peaks. Additional support for hexagonal sym-
metry is the two-dimensional scattering pattern from oriented
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samples showing six principal peaks all separated by an azi-
muthal angle of 606]. o
One should consider the possibility that the instability =< -

predicted by Pereira could be an artifact of his particular =_
implementation of SST8]. In general, SST calculations are %
supplemented with various simplifying approximatidrés. w
For example, the implementation used by Pereira requires ar , ~ 001
assumed interfacial shage.g., an ellipsg rather than ob- L
taining the detailed shape through minimization of the free =~
energy. Nevertheless, since this particular approximation 0.00 —
overestimates the free energy of a deformed unit cell, it 07
should favor A=1. Another approximation in his SST
implementation is that the connectivity of tAeandB blocks FIG. 1. Free energ¥ of the cylindrical phase as a function of

is not enforced at the interface, causing it to underestimatg,e ynit cell aspect ratio), plotted for two copolymer composi-
the stretching energy. The resulting inaccuracy should intions,f, at a segregation ofN=40. The curves are calculated using
crease as the unit cell becomes less symmetrical, i.€)\, as the SST of Olmsted and Milndil1], assuming that the interface
deviates from 1. Hence, this latter approximation could leadieforms affinely along with the unit cell as depicted in the diagrams
to an erroneous instability in the hexagonal symmetry. above. For purposes of comparison, the free enérgy, of a hex-

Likhtman and Semenoy10] have introduced an im- agonal cylindrical phasgé.e., A=1) has been subtracted from each
proved version of SST that enforces the connectivity of thecurve.
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center of theA domain with straight edges that kink only at 0.03
the A-B interface, so that the fraction of the wedge in the — L
domain matches th& volume fraction,f, of the molecule. N r
Note that because the unit cell and interface deform together £ o02f
affinely, the wedges do as well. Within the Olmsted-Milner — —~ i
formalism, the free energy for this geometry is given exactly E i
by the simple expression, LI._ 0.01 F
R\’ S
R 2 A2 L

nkaT (ap+ag)(1+A°) aN1’2> +2E(J1-A79) 0.00
0.7

fXN 1/2 R -1
X 3\/577 aNy2 ’ (1) FIG. 2. An analogous plot to that of Fig. 1, but calculated using
SCFT.

where the size of the unit celR, is defined in Fig. 1. The strong-stretching assumption in SST as well as doing away
interfacial energy term, which involves a complete elliptical with all the supplementary approximatiof. Figure 2 dis-
integral of the second kind, remains precisely the same as iglays the equivalent free energy curves to those in Fig. 1, but
Ref.[1]. However, due to our alternative treatment combinechis time calculated using SCFT. These numerical calcula-
with the symmetry of the unit cell, the affine deformation of tions confirm that, in each case, the minimum occurd at
the wedges, and the fact that the field acting on the chains is 1+1074, consistent with perfect hexagonal symmetry.
parabolic, our stretching energy term takes on a much simnotice, however, that the SCFT curves in Fig. 2 are notably
pler form involving one coefficient for each domaiii2].  shallower than the ones based on the Olmsted-Milner imple-
The minority A domain can be treated analytically to give mentation of SST. This can be attributed to the fact that the
ap=m/3/16, but the coefficient for the majori§ domain  SST does not minimize the free energy with respect to inter-
must be calculated numerically. Fé=0.2 we obtainag  facial shape whereas the SCFT does.
=0.31657, whereas for=0.3 we calculatexg=0.23577. In conclusion, we used an advanced SST as well as SCFT
The resulting free energy curves minimized with respe®to to demonstrate that the hexagonal unit cell of the cylindrical
are plotted in Fig. 1 as a function of deformatian, for both  phase is stable contrary to the predictions of R&f. Fur-
compositions. In each case, the minimum occurs precisely ahermore, this demonstration highlights the need for theoret-
A =1 corresponding to perfect hexagonal symmetry. ical calculations to enforce the connectivity of the block co-
Ultimately, the most accurate method available for pre-polymer chains. Naturally, it also calls into question the
dicting the free energy of a block copolymer melt is self-reliability other predictions based on the simplified SST
consistent field theorySCFT) [13]. This method relaxes the method[8], such as the thin film results in Refl].
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