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Comment on ‘‘Cylindrical phase of block copolymers: Stability of circular configuration to
elliptical distortions and thin film morphologies’’
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Pereira@Phys. Rev. E63, 061809~2001!# has recently predicted that the hexagonal symmetry of the cylin-
drical phase inAB diblock copolymer melts is highly unstable. This is in stark disagreement with experiment,
and can be attributed to the fact that the connectivity of theA andB blocks is not enforced in his implemen-
tation of the strong-segregation theory. Here, the stability of the hexagonal symmetry is supported by alterna-
tive calculations based on a more advanced strong-segregation theory that enforces the connectivity as well as
the more rigorous self-consistent field theory.
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Pereira@1# has recently examined the cylindrical phase
a diblock copolymer melt using strong-segregation the
~SST! @2#, and found that a hexagonal unit cell is unstab
with respect to a deformation. In fact, he predicts that
unit cell deforms to aspect ratios of up toL'1.4 ~see Fig. 1!
@3#. This result is highly unexpected and contradicts o
present understanding that the entropic stretching energ
vors domains of uniform thickness@4,5#. If we accept this
prediction, we should also expect other structures, such
the spherical phase, to be affected in a similar way.

To our knowledge, such a deformation has never b
suggested by experiment despite numerous transmis
electron microscopy studies. In shear-oriented sam
where the microtomed slice is known to be perpendicula
the cylindrical axis@6#, any distortion*20% from hexago-
nal symmetry should be readily observed. Small-angle s
tering studies provide even further compelling eviden
Powder patterns from unoriented samples of the cylin
phase display a sequence of peaks at the relative posit
1:A3:A4:A7: . . . , characteristic of hexagonal symmet
@7#. Here, any distortion*10% would produce an obviou
splitting of the peaks. Additional support for hexagonal sy
metry is the two-dimensional scattering pattern from orien
samples showing six principal peaks all separated by an
muthal angle of 60°@6#.

One should consider the possibility that the instabil
predicted by Pereira could be an artifact of his particu
implementation of SST@8#. In general, SST calculations ar
supplemented with various simplifying approximations@9#.
For example, the implementation used by Pereira require
assumed interfacial shape~e.g., an ellipse!, rather than ob-
taining the detailed shape through minimization of the f
energy. Nevertheless, since this particular approxima
overestimates the free energy of a deformed unit cell
should favor L51. Another approximation in his SS
implementation is that the connectivity of theA andB blocks
is not enforced at the interface, causing it to underestim
the stretching energy. The resulting inaccuracy should
crease as the unit cell becomes less symmetrical, i.e., aL
deviates from 1. Hence, this latter approximation could le
to an erroneous instability in the hexagonal symmetry.

Likhtman and Semenov@10# have introduced an im
proved version of SST that enforces the connectivity of
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blocks as well as minimizes the free energy with respec
the interfacial shape, but it is relatively complicated to app
Less accurate but simpler to implement is an approach in
duced by Olmsted and Milner@11#, where the connectivity is
enforced by subdividing the unit cell into infinitesima
wedges. To confirm our expectations, we implement this
ter algorithm.

The Olmsted-Milner approach still requires us to spec
an interfacial shape. In the interest of providing the m
honest test of Ref.@1#, we select the same identical interfa
cial shape. That is we choose an elliptical interface that
forms affinely along with the Wigner-Seitz unit cell such th
they both maintain the same aspect ratio,L ~see the diagram
in Fig. 1!. Wedges are then constructed emerging from

FIG. 1. Free energyF of the cylindrical phase as a function o
the unit cell aspect ratio,L, plotted for two copolymer composi
tions,f, at a segregation ofxN540. The curves are calculated usin
the SST of Olmsted and Milner@11#, assuming that the interfac
deforms affinely along with the unit cell as depicted in the diagra
above. For purposes of comparison, the free energyFhex of a hex-
agonal cylindrical phase~i.e.,L51) has been subtracted from eac
curve.
©2003 The American Physical Society01-1
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center of theA domain with straight edges that kink only
the A-B interface, so that the fraction of the wedge in theA
domain matches theA volume fraction,f, of the molecule.
Note that because the unit cell and interface deform toge
affinely, the wedges do as well. Within the Olmsted-Miln
formalism, the free energy for this geometry is given exac
by the simple expression,

F

nkBT
5~aA1aB!~11L2!S R

aN1/2D 2

12E~A12L22!

3S f xN

3A3p
D 1/2S R

aN1/2D 21

, ~1!

where the size of the unit cell,R, is defined in Fig. 1. The
interfacial energy term, which involves a complete elliptic
integral of the second kind, remains precisely the same a
Ref. @1#. However, due to our alternative treatment combin
with the symmetry of the unit cell, the affine deformation
the wedges, and the fact that the field acting on the chain
parabolic, our stretching energy term takes on a much s
pler form involving one coefficient for each domain@12#.
The minority A domain can be treated analytically to giv
aA5pA3/16, but the coefficient for the majorityB domain
must be calculated numerically. Forf 50.2 we obtainaB
50.316 57, whereas forf 50.3 we calculateaB50.235 77.
The resulting free energy curves minimized with respect tR
are plotted in Fig. 1 as a function of deformation,L, for both
compositions. In each case, the minimum occurs precise
L51 corresponding to perfect hexagonal symmetry.

Ultimately, the most accurate method available for p
dicting the free energy of a block copolymer melt is se
consistent field theory~SCFT! @13#. This method relaxes the
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strong-stretching assumption in SST as well as doing aw
with all the supplementary approximations@9#. Figure 2 dis-
plays the equivalent free energy curves to those in Fig. 1,
this time calculated using SCFT. These numerical calcu
tions confirm that, in each case, the minimum occurs aL
5161024, consistent with perfect hexagonal symmet
Notice, however, that the SCFT curves in Fig. 2 are nota
shallower than the ones based on the Olmsted-Milner im
mentation of SST. This can be attributed to the fact that
SST does not minimize the free energy with respect to in
facial shape whereas the SCFT does.

In conclusion, we used an advanced SST as well as S
to demonstrate that the hexagonal unit cell of the cylindri
phase is stable contrary to the predictions of Ref.@1#. Fur-
thermore, this demonstration highlights the need for theo
ical calculations to enforce the connectivity of the block c
polymer chains. Naturally, it also calls into question t
reliability other predictions based on the simplified SS
method@8#, such as the thin film results in Ref.@1#.

FIG. 2. An analogous plot to that of Fig. 1, but calculated us
SCFT.
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